文件名称:基于离散度的决策树构造方法 (2008年)
文件大小:329KB
文件格式:PDF
更新时间:2024-06-01 10:20:37
自然科学 论文
在构造决策树的过程中,属性选择将影响到决策树的分类精度.对此,讨论了基于信息熵方法和WMR方法的局限性.提出了信息系统中条件属性集的离散度的概念.利用该概念在决策树构造过程中选择划分属性,设计了基于离散度的决策树构造算法DSD. DSD算法可以解决WMR方法在实际应用中的局限性.在UCI数据集上的实验表明,该方法构造的决策树精度与基于信息熵的方法相近,而时间复杂度则优于基于信息熵的方法.