文件名称:论文研究-新的决策树构造方法.pdf
文件大小:764KB
文件格式:PDF
更新时间:2022-10-01 09:43:30
论文研究
信息技术不断的进步,现实世界中需要处理的数据已由单一的数值型逐渐转变成由数值、文本、符号等类型构成的混合型数据。与现存大量的面向数值型数据的聚类算法相比,能有效处理混合型数据的聚类算法相对较少。为此,在格论基础上提出了一种适用于混合数据的聚类算法,该算法根据对象间格的覆盖数量来度量相似度,根据高覆盖数高相似度的原则选择聚类中心进行聚类。实验结果表明与其他传统聚类算法相比,新算法在不增加空间复杂度的情况下有效地提高了聚类的质量。