文件名称:machine-learning
文件大小:3KB
文件格式:ZIP
更新时间:2024-04-26 17:03:12
邻近算法(KNN,K-NearestNeighbor K-최근접이웃 알고리즘 이론) 主要原理(주요원리) 最简单最初级的分类器是将全部的训练数据所对应的类别都记录下来,当测试对象的属性和某个训练对象的属性完全匹配时,便可以对其进行分类。但是怎么可能所有测试对象都会找到与之完全匹配的训练对象呢,其次就是存在一个测试对象同时与多个训练对象匹配,导致一个训练对象被分到了多个类的问题,基于这些问题呢,就产生了KNN。 KNN是通过测量不同特征值之间的距离进行分类。它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,其中K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 下面通过一个简单的例子说明一下:如下图,绿色圆要
【文件预览】:
machine-learning-master
----README.md(5KB)