文件名称:基于Erlang-HSMM的设备剩余寿命预测研究
文件大小:1.25MB
文件格式:PDF
更新时间:2024-05-20 09:01:29
隐半马尔可夫模型 爱尔朗分布 故障诊断
对于关键复杂设备进行健康诊断和设备剩余寿命预测,提出了一种基于爱尔朗分布和隐半马尔可夫模型的联合剩余寿命预测模型(Erlang-HSMM,E-HSMM)。首先,提出了改进的前后向算法、维特比算法和Baum-Welch算法,有效地降低了模型的计算复杂度;其次,基于爱尔朗分布改进设备的健康状态逗留时间,将状态逗留时间分为已遍历和未遍历两个部分,提出新的健康状态逗留时间的概率分布;最后,针对状态监测数据,利用失效率理论构建设备剩余寿命预测模型。通过美国Caterpillar公司液压泵的状态监测实际数据进行评价与验证,实验结果表明,E-HSMM模型对设备的状态诊断和剩余寿命预测更加符合实际状况,比传统的隐半马尔可夫模型(HSMM)更有效。