论文研究-基于稀疏矩阵字典的移动用户行为识别方法.pdf

时间:2022-08-11 11:46:13
【文件属性】:

文件名称:论文研究-基于稀疏矩阵字典的移动用户行为识别方法.pdf

文件大小:964KB

文件格式:PDF

更新时间:2022-08-11 11:46:13

稀疏矩阵字典,手机用户行为,人体行为识别,压缩感知

通过手机内置加速度传感器数据对人类日常行为进行识别具有便捷、实时、无干扰的优点,为了提高识别的准确率和稳定性,提出一种基于加速度特征稀疏矩阵字典的分类方法识别行为。从不同行为的多个训练样本构造出一个过完备字典,基于该字典通过求解最小l1范数得到待识别样本的稀疏系数,根据稀疏系数计算待识别样本对应不同行为的残差并选取最小值对应的行为作为分类结果。实验表明该方法识别手机用户日常行为可以达到84.93%的准确率,高于传统的决策树和BP神经网络算法的分类准确率,且分类稳定性也优于传统分类方法。


网友评论