文件名称:基于矩阵表示的局部敏感辨别分析 (2009年)
文件大小:439KB
文件格式:PDF
更新时间:2024-05-17 23:50:09
工程技术 论文
局部敏感辨别分析(LSDA)只能处理向量型数据,当处理图像等数据时容易产生奇异性问题,为此提出了一种二维局部敏感辨别分析(2DLSDA)方法,可以直接处理二维图像矩阵,能够避免奇异性问题.通过使用矩阵表示,2DLSDA可以有效地利用图像像素间中的空间信息.依据近邻的不同,构造2个分别表示类内近邻关系和类间近邻关系的图,计算2个图上的权重矩阵,基于Schur分解求出2个正交变换矩阵.依据图像的2种展开方式,提出了2种单边2DLSDA算法.在ORL和Yale人脸数据集上的实验结果表明,基于Schur分解的2D