文件名称:数列极限-模拟电路和数字电路自学手册下
文件大小:3.62MB
文件格式:PDF
更新时间:2024-07-04 21:28:03
习题解答
1.1 数数数轴轴轴 1.2 无无无尽尽尽小小小数数数 1.3 数数数列列列极极极限限限 1.3.1 “““ε−N””” (((1))) 1 1+ √ n < 1√ n < ε,,,取取取n > 1 ε2 (((2))) sinn n 6 1 n < ε,,,取取取n > 1 ε (((3)))原原原式式式单单单调调调递递递减减减,,,故故故可可可取取取2n,,, (2n)! (2n)2n < nn(2n)n (2n)2n = ( 1 2 )n < ε,,,由由由例例例3知知知可可可取取取n > ln ε ln 1 2 (((4)))| (−1) n−1 n | < 1 n < ε,,,取取取n > 1 ε (((5)))| 2n+3 5n−10 − 2 5 | = | 7 5n−10 | < ε,,,取取取n > 1 5 ( 7 ε + 10 ) (((6)))|0.9 · · · 9− 1| = 10−n < ε,,,取取取n > ln 1 ε ln 10 (((7)))| 1+2+···+n n2 − 1 2 | = | (n+1)n 2n2 − 1 2 | = 1 2n < ε,,,取取取n > 1 2ε (((8)))| 1 2+22+···+n2 n3 − 1 3 | = |n(n+1)(2n+1) 6n3 − 1 3 | = 3n 2+n 6n3 < 3n 2+n2 6n3 = 2 3n < ε,,,取取取n > 2 3ε (((9)))| arctann− π 2 | = π 2 − arctann < ε,,,arctann > π 2 − ε,,,取取取n > tan ( π 2 − ε ) (((10)))π 2 − ε < arctann 2 = n 2 arctann n2+n2 6 n 2 arctann 1+n2 < arctann < π 2 + ε,,,取取取n > max { tan (π − 2ε) , tan ( π 2 − ε )} 1.3.2 按按按定定定义义义;;; ||an| − |a|| 6 |an − a| < ε,即得证;逆命题不成立,如an = (−1)n 1.3.3 按按按定定定义义义;;; 取ε = 1 2 ,若k ∈ (A− ε,A+ ε),则k − 1 < A− ε < k < A+ ε < k + 1,则(A− ε,A+ ε)中不含其它整数。 1.3.4 按按按定定定义义义重重重新新新叙叙叙述述述即即即可可可;;; (((1)))不不不能能能;;;如如如{−1, 1,−1, 1, · · ·}即即即an = (−1) n ,,,取取取a = 1 1