文件名称:satellite-image-recognition:卫星图像识别
文件大小:63.69MB
文件格式:ZIP
更新时间:2024-06-02 21:23:39
img classification-algorithm JupyterNotebook
卫星图像识别 使用U-Net模型的卫星图像识别 演示 数据源 从Google卫星地图中获取数据,然后对其进行标记和拆分。 然后,模型基于54 *(160px 160px 3)RGB图像数据。 火车 培训过程采用反射,镜面方法和U-net模型 RGB清单 ['water'] = [48,93,254] ['tree'] = [12,169,64] ['操场'] = [139,69,19] ['road'] = [47,79,79] ['building_yard'] = [255,255,255] ['bare_land'] = [239,156,119] ['general_building'] = [249,255,25] ['乡村'] = [227,23,33] ['factory'] = [48,254,254] ['shadow'] = [255,1,255] 引
【文件预览】:
satellite-image-recognition-master
----theory.docx(10.95MB)
----img()
--------4.gif(3.26MB)
--------3.gif(4.01MB)
--------2.gif(5.15MB)
--------5.gif(5.07MB)
--------1.gif(4.32MB)
----create_model()
--------road_pre.ipynb(5.52MB)
--------remove_little.py(868B)
--------create_mask.py(3KB)
--------split_img.py(2KB)
--------640_predict.py(2KB)
--------train.py(18KB)
--------no_padding.ipynb(5.42MB)
--------continu_get.ipynb(1.21MB)
--------with_reflect.ipynb(2.93MB)
--------tmp_result.tif(1.69MB)
--------get_mean_std.py(4KB)
--------test.py(13KB)
--------10_class.ipynb(25KB)
--------remove_noise.py(2KB)
--------denosie.py(4KB)
--------tree_train.py(16KB)
--------water_train.py(16KB)
--------Depth_optimization_net.ipynb(3.34MB)
--------Sharpen.py(724B)
--------extra_functions.py(10KB)
--------split_validation_img.py(560B)
--------create_mask_by_rgb.py(3KB)
--------road_train.py(13KB)
--------demo.py(3KB)
--------u_net_img.py(40KB)
--------tree_pre.ipynb(6.15MB)
--------water_pre.ipynb(3.06MB)
--------10_class.py(11KB)
--------building_train.py(17KB)
--------generate_pic.py(13KB)
--------train_csv.py(674B)
--------10_class_predict.py(1KB)
--------check_grid_ac.py(3KB)
--------enhance_all.py(812B)
--------erosion-dilation-image.py(730B)
--------building_pre.ipynb(11.84MB)
--------merge_class.ipynb(14KB)
--------get_10_class_matrix.py(2KB)
--------add_random_rotate.ipynb(6.35MB)
--------splite_new_img.py(2KB)
--------optimization_net.ipynb(938KB)
----LICENSE(1KB)
----README.md(1KB)
----.gitignore(1KB)
----server()
--------config.py(684B)
--------run.py(92B)
--------requirements.txt(2KB)
--------app()