文件名称:经典EM算法介绍-由浅入深
文件大小:668KB
文件格式:PDF
更新时间:2011-11-09 13:26:31
EM GMM 期望最大 混合高斯分布
这几天把EM算法(Expectation Maxinum)反复琢磨了几遍,经过几次讨论,对EM算法的数学模型有了比较深入的理解。考虑到: 1. 这个算法在Machine Learning中极其重要,也是进行Machine Learning深入研究的一个重要阶梯 2. 这个算法确实需要一定的概率和数学基础 3. 中文或翻译的教材似乎没有很好的解释清楚这个算法 于是我根据Pattern Recogition and Machine Learning一书相关章节的内容,结合自己的理解,写了一套中文的EM算法介绍和分析。又混合高斯模型开始,由浅入深,逐步讲解了EM算法在混合高斯模型应用和一般化描述。自己感觉还是比较容易理解的。 如果发现pdf中有什么问题,或有什么错误,请直接与我联系,欢迎讨论。 要下载最新的版本请到http://glatteis.spaces.live.com