文件名称:基于高斯扰动和指数递减策略的改进蝙蝠算法
文件大小:1.91MB
文件格式:PDF
更新时间:2024-05-20 07:43:22
蝙蝠算法 高斯扰动 指数递减策略
针对基本蝙蝠算法后期收敛速度慢、收敛精度不高、稳定性不强等问题,提出基于高斯扰动和指数递减策略的改进蝙蝠算法(GDEDBA)。将指数递减策略引入速度更新公式,使算法迅速进入局部寻优并展开精确搜索;构造高斯扰动项加入到局部新解产生公式,使局部新解中所有粒子与当前全局最优粒子产生信息交流与学习,防止陷入局部最优,增加种群多样性;设计扰动控制因子来控制高斯扰动的扰动范围,增强算法的稳定性。15个测试函数的仿真结果表明,改进算法的寻优性能显著提高,收敛速度更快,求解精度更高,稳定性更强。