文件名称:Effective_Extractive_Summarization:ACL 2019论文代码
文件大小:40KB
文件格式:ZIP
更新时间:2024-06-05 05:38:21
Python
Effective_Extractive_Summarization ACL 2019论文代码(口头): 如果您使用我们的代码或数据,请引用我们的论文: @inproceedings{zhong2019searching, title={Searching for Effective Neural Extractive Summarization: What Works and What’s Next}, author={Zhong, Ming and Liu, Pengfei and Wang, Danqing and Qiu, Xipeng and Huang, Xuan-Jing}, booktitle={Proceedings of the 57th Conference of the Association for Computational Linguisti
【文件预览】:
Effective_Extractive_Summarization-master
----decoding.py(3KB)
----model()
--------util.py(3KB)
--------DeepLSTM.py(6KB)
--------__init__.py(0B)
--------rnn.py(5KB)
--------TransformerEncoder.py(2KB)
--------extract.py(17KB)
--------attention.py(975B)
----metric.py(4KB)
----utils.py(2KB)
----main.py(13KB)
----training.py(7KB)
----README.md(4KB)
----data()
--------batcher.py(6KB)
--------data.py(827B)
--------__init__.py(0B)
----transformer()
--------Layers.pyc(2KB)
--------Layers.py(2KB)
--------__init__.pyc(637B)
--------Modules.pyc(1KB)
--------__init__.py(409B)
--------Modules.py(729B)
--------Optim.py(1KB)
--------Translator.py(7KB)
--------Constants.py(109B)
--------SubLayers.pyc(3KB)
--------Models.py(7KB)
--------Constants.pyc(352B)
--------Beam.py(3KB)
--------SubLayers.py(3KB)
----evaluate.py(1KB)