文件名称:基于Gaussian-支持向量回归机的高速公路短时交通量预测 (2011年)
文件大小:843KB
文件格式:PDF
更新时间:2024-06-12 04:04:50
工程技术 论文
针对高速公路短时交通量的实时性、波动性和非线性的特点,将支持向量回归机(SVR)应用于高速公路短时交通量预测,并采用Gaussian损失函数来代替ε-不敏感损失函数,对原始序列进行降噪处理,为了更好的优选SVR模型参数,采用遗传算法(GA)进行参数优选,建立了基于GA 优化的GA-Gaussian-SVR高速公路短时交通量预测模型,将本路段前几个时段交通量、天气因素和出行日期作为影响因素输入,结合实例进行了仿真预测.结果表明该方法可有效应用于高速公路短时交通量预测.