文件名称:论文研究-采用深度信念网络的语音转换方法.pdf
文件大小:516KB
文件格式:PDF
更新时间:2022-09-27 00:53:03
论文研究
对说话人语音个性特征信息的表征和提取进行了深入研究,提出了一种基于深度信念网络(Deep Belief Nets,DBN)的语音转换方法。分别用提取出的源说话人和目标说话人语音频谱参数来训练DBN,分别得到其在高阶空间的语音个性特征表征;通过人工神经网络(Artificial Neural Networks,ANN)来连接这两个高阶空间并进行特征转换;使用基于目标说话人数据训练出的DBN来对转换后的特征信息进行逆处理得到转换后语音频谱参数,合成转换语音。实验结果表明,与传统的基于GMM方法相比,该方法效果更好,转换语音音质和相似度同目标语音更接近。