论文研究-基于深度信念网络的在线视频热度预测.pdf

时间:2022-09-28 00:33:39
【文件属性】:

文件名称:论文研究-基于深度信念网络的在线视频热度预测.pdf

文件大小:922KB

文件格式:PDF

更新时间:2022-09-28 00:33:39

论文研究

针对在线视频热度预测研究中分类及预测效果欠佳,规则化较多和较缺乏实践检验等问题,通过对实际在线视频服务系统所采集的海量数据研究,提出一种基于深度信念网络(Deep Belief Networks,DBNs)的视频热度预测方法。首先,结合社交网络的关注度和视频关键词的搜索热度,对影响因子进行了建模和量化处理;其次,根据输入和输出变量确定了DBNs各层网络的结构,优化了网络参数和预测模型;最后,通过在线视频服务商的数据对深度信念网络进行训练,并多次交叉实验对比分析,结果表明基于DBNs方法在视频热度预测上准确率最高79.47%(国内视频)、65.33%(国外视频),可以为在线视频上映前的投资、宣传以及风险评估提供较全面可靠的参考决策。


网友评论