文件名称:基于Kinect的中国手语识别 (2013年)
文件大小:1.71MB
文件格式:PDF
更新时间:2024-05-27 17:11:24
自然科学 论文
基于微软Kinect提取的深度图像信息,提出了一种新的中国手语识别方法。该方法首先利用Kinect获取人体主要骨骼的3D坐标和手的3D坐标;然后根据中国手语的手型、手的位置和手的方向3个主要构造成分,分别采用DBSCAN和K-means聚类算法获取手语特征中的手的位置基元和方向基元,提出一种结合CLTree和Attribute bagging聚类集成方法提取手型基元;最后将这3类基元进行组合采用模板匹配方法识别中国手语。通过对选取的72个中国手语进行识别实验,平均识别率为90.35%,实验结果说明了方法的