文件名称:深度学习之卷积神经网络CNN模式识别VS代码
文件大小:10.29MB
文件格式:RAR
更新时间:2017-03-10 12:07:02
深度学习 卷积神经网络 CNN VS
深度学习之卷积神经网络CNN做手写体识别的VS代码。支持linux版本和VS2012版本。
tiny-cnn: A C++11 implementation of convolutional neural networks
========
tiny-cnn is a C++11 implementation of convolutional neural networks.
design principle
-----
* fast, without GPU
98.8% accuracy on MNIST in 13 minutes training (@Core i7-3520M)
* header only, policy-based design
supported networks
-----
### layer-types
* fully-connected layer
* convolutional layer
* average pooling layer
### activation functions
* tanh
* sigmoid
* rectified linear
* identity
### loss functions
* cross-entropy
* mean-squared-error
### optimization algorithm
* stochastic gradient descent (with/without L2 normalization)
* stochastic gradient levenberg marquardt
dependencies
-----
* boost C++ library
* Intel TBB
sample code
------
```cpp
#include "tiny_cnn.h"
using namespace tiny_cnn;
// specify loss-function and optimization-algorithm
typedef network
【文件预览】:
cnn_vs2012
----vc()
--------train-images.idx3-ubyte(44.86MB)
--------t10k-labels.idx1-ubyte(10KB)
--------t10k-images.idx3-ubyte(7.48MB)
--------tiny_cnn.vcxproj(6KB)
--------test.vcxproj.filters(2KB)
--------tiny_cnn.sln(1KB)
--------tiny_cnn_test.vcxproj(4KB)
--------train-labels.idx1-ubyte(59KB)
--------cnn.vcxproj.filters(2KB)
----waf(88KB)
----wscript(1KB)
----include()
--------fully_connected_layer.h(5KB)
--------config.h(2KB)
--------convolutional_layer.h(6KB)
--------picotest.h(23KB)
--------mnist_parser.h(5KB)
--------fixed_point.h(6KB)
--------util.h(5KB)
--------network.h(13KB)
--------product.h(12KB)
--------optimizer.h(3KB)
--------deform.h(2KB)
--------loss_function.h(2KB)
--------image.h(5KB)
--------layer.h(10KB)
--------average_pooling_layer.h(3KB)
--------activation_function.h(4KB)
--------tiny_cnn.h(2KB)
--------partial_connected_layer.h(8KB)
----src()
--------test.cpp(15KB)
--------wscript(352B)
--------main.cpp(7KB)
----.gitignore(2KB)
----README.md(2KB)
----.gitattributes(483B)