文件名称:论文研究-基于深度信息的实时手势识别和虚拟书写系统.pdf
文件大小:738KB
文件格式:PDF
更新时间:2022-10-01 00:31:10
论文研究
鉴于无接触体感交互技术在人机交互领域的成功应用,提出了一种基于Kinect深度相机的实时隔空虚拟书写方法。结合颜色和深度数据检测和分割出手掌区域;进一步,通过修改的圆扫描转换算法获得手指的个数,以识别不同的手势指令;根据指尖检测从指尖的运动轨迹分割出独立的字符或汉字运动轨迹,并采用随机森林算法识别该字符或汉字。这种基于深度信息的手势检测和虚拟书写方法可以克服光照和肤色重叠的影响,可靠实时地检测和识别手势和隔空书写的文字,其识别率达到93.25%,识别速度达到25 frame/s。