文件名称:Springer.Mathematics.for.Computer.Graphics.2nd.Edition
文件大小:3.63MB
文件格式:PDF
更新时间:2012-08-05 08:31:15
Springer.Mathematics.for.Computer.Graphics.2nd.Edition
Mathematics is a beautiful subject. Its symbols, notation and abstract structures permit us to define, manipulate and resolve extremely complex problems. The symbols by themselves, however, are meaningless – they are nothing more than a calligraphic representation of a mental idea. If one does not understand such symbols, then the encoded idea remains a secret. Having spent most of my life using mathematics, I am still conscious of the fact that I do not understand much of the notation used by mathematicians. And even when I feel that I understand a type of notation, I still ask myself “Do I really understand its meaning?”. For instance, I originally studied to be an electrical engineer and was very familiar with i = √−1, especially when used to represent out of phase voltages and currents. I can manipulate complex numbers with some confidence, but I must admit that I do not understand the meaning of ii. This hole in my knowledge makes me feel uncomfortable, but I suppose it is reassuring to learn that some of our greatest mathematicians have had problems understanding some of their own inventions. Some people working in computer graphics have had a rigorous grounding in mathematics and can exploit its power to solve their problems. However, in my experience, the majority of people have had to pick up their mathematical skills on an ad hoc basis depending on the problem at hand. They probably had no intention of being mathematicians, nevertheless they still need to learn about the mathematics and apply it intelligently, which is where this book comes in. To begin with, this book is not for mathematicians. They would probably raise their hands in horror about the lack of mathematical rigour I have employed, or probably not employed! This book is for people working in computer graphics who know that they have to use mathematics in their