文件名称:论文研究-基于数据变换的GM(1,1)误差校正方法.pdf
文件大小:840KB
文件格式:PDF
更新时间:2022-10-10 13:14:56
论文研究
论文研究-基于数据变换的GM(1,1)误差校正方法.pdf, 提高预测方法的预测效果具有重要意义,但是仅靠建立单一的预测模型来提高预测精度是非常困难的.本文对当前预测方法存在的不足进行了阐述,在此基础上提出将误差校正方法引入预测以提高预测精度的新思路.首先,采用预测方法(文中以T-S模糊神经网络方法为例)对训练样本进行拟合,再对预测对象进行初始预测;其次,引入加速平移变换和加权均值变换对误差序列进行处理,再以处理后的数据为样本构建基于数据变换的GM(1,1)误差预测模型,并对该序列后续点进行预测;最后,利用误差预测结果对初始预测值进行校正.文章最后以上证综合指数的收盘价的预测为例,算例分析表明,与校正前的预测精度相比,校正后的预测精度有显著提高,进而验证了该模型的有效可行.