文件名称:LinearRegression:线性回归模型预测房价
文件大小:480KB
文件格式:ZIP
更新时间:2024-04-04 01:25:54
JupyterNotebook
线性回归模型预测房价 该笔记本创建了线性回归模型来预测房价。 数据取自Ames Housing数据集,该数据集由Dean De Cock为数据科学进行了编译。 数据集由1,460行和81列组成。 SalePrice是回归模型的因变量。 确定数据集中的自变量与SalePrice之间的相关系数后,为模型选择了5个自变量: 综合质量-综合质量 GrLivArea-地上生活区 车库面积-车库面积 TotalBsmtSF-地下室总平方英尺 建造年份-施工年份 将数据分为训练和测试数据集后,使用sklearn.linear_model.LinearRegression拟合线性模型。 该模型的R平方值为0.838。
【文件预览】:
LinearRegression-main
----linear_regression_housing.ipynb(655KB)
----README.md(960B)