文件名称:论文研究-具有动态特性的聚类弹性网络算法研究.pdf
文件大小:1.04MB
文件格式:PDF
更新时间:2022-09-26 09:25:56
论文研究
聚类分析是一种非常重要的聚类工具,被广泛应用在各科学领域的聚类问题中。其中,弹性网络是一种较好的聚类分析算法,尤其在高维空间有很大优势。提出了一种新的聚类弹性网络算法CENA(Clustering Elastic Net Algorithm)。该算法将一个面向聚类的描述数据点与弹性节点关系的能量函数用于ENA(Elastic Net Algorithm)求解模式中,结合极大熵原理,计算得到*能函数。当*能函数达到全局极小时,即可获得弹性网络的聚类解。通过大量实验证明,提出的CENA算法运行结果稳定,可以有效提升算法空间搜索能力,节省运行时间开销,规避参数调节问题。该算法相较于经典划分聚类算法,大大提高了聚类质量。