03-群体智能优化算法-人工蜂群优化算法.docx

时间:2023-03-27 11:52:32
【文件属性】:

文件名称:03-群体智能优化算法-人工蜂群优化算法.docx

文件大小:291KB

文件格式:DOCX

更新时间:2023-03-27 11:52:32

群体智能 人工蜂群优化

在自然界中,群体是由多个为实现一共同目标的个体构成,目标可以是抵御捕食者、建巢穴、保留或繁殖种群、充分利用环境中的资源等。在群体中为完成目标,存在着任务选择机制和分工,个体根据局部规则和相邻个体间的相互作用进行自组织。这些低层次的交互导致了全局的群体行为。Bonabeau等人[1]将自组织定义为正反馈、负反馈、波动和多重交互作用的组合。正反馈促进个体更频繁地做出有益的行为,或促使其他个体向适当的行为靠拢。蚂蚁分泌信息素或蜜蜂跳舞都是正反馈的例子。由于正反馈效应的存在,当种群趋于饱和时,负反馈机制抛弃了无效的模式。蚂蚁信息素的蒸发或蜜蜂放弃已耗尽的资源就是负反馈的例子。这种波动带来了创造力和创新,以探索新的模式。多重交互是群中相邻代理之间的通信。自组织和分工使群体适应外部和内部的变化。结合上述特点的群体智能具有可扩展性、容错性、适应性、速度快、模块化、自主性、并行性等优点[2]。 本文档主要给出了人工蜂群算法的原理和算法过程。


网友评论