文件名称:sRNN_TSC_Anomaly_Detection
文件大小:32KB
文件格式:ZIP
更新时间:2024-05-23 08:44:09
Python
重温基于稀疏编码的rnn框架中的异常检测 此仓库是[[重读基于堆栈稀疏框架中基于稀疏编码的异常检测,ICCV 2017]的官方开源文件 它是在tensorflow上实现的。 请按照说明运行代码。 1.安装(建议使用python3.6安装Anaconda) 安装python的第3个程序包依赖项(在requirements.txt中列出) numpy==1.15.4 matplotlib==2.2.2 scikit_image==0.13.1 six==1.11.0 opencv_python==3.4.3.18 h5py==2.7.1 scipy==1.1.0 tensorflow_gpu==1.11.0 seaborn==0.8.1 skimage==0.0 scikit_learn==0.20.2 tensorflow==1.12.0 PyYAML==3.13 pip install
【文件预览】:
sRNN_TSC_Anomaly_Detection-master
----.gitignore(10B)
----requirements.txt(218B)
----txt()
--------enter_feature_testing.txt(36B)
--------avenue_feature_testing.txt(126B)
--------avenue_feature_training.txt(96B)
--------ped2_feature_testing.txt(72B)
--------shanghaitech_feature_training.txt(3KB)
--------shanghaitech_feature_testing.txt(1KB)
--------exit_feature_testing.txt(24B)
--------enter_feature_training.txt(42B)
--------ped2_feature_training.txt(96B)
--------exit_feature_training.txt(60B)
--------ped1_feature_testing.txt(216B)
--------ped1_feature_training.txt(204B)
----dataset()
--------anomaly_detection()
----run_anomaly_detection.py(3KB)
----extract_feature()
--------extract_feature_twostream()
----libs()
--------FLAGS.py(156B)
--------__init__.py(0B)
--------base.py(4KB)
--------feature_loader_multi_patch.py(7KB)
--------sista_rnn.py(15KB)
--------sista_rnn_anomaly_detection.py(11KB)
--------sista_rnn_anomaly_detection_coherence.py(12KB)
--------common.py(306B)
----README.md(3KB)
----config()
--------anomaly_detection_coherence.yaml(842B)
--------anomaly_detection.yaml(862B)
----run_anomaly_detection_coherence.py(3KB)
----evaluate.py(8KB)