Data.Science.from.Scratch.First.Principles.with.Python

时间:2018-07-27 04:44:50
【文件属性】:

文件名称:Data.Science.from.Scratch.First.Principles.with.Python

文件大小:5.02MB

文件格式:PDF

更新时间:2018-07-27 04:44:50

Data Python

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases Table of Contents Chapter 1. Introduction Chapter 2. A Crash Course in Python Chapter 3. Visualizing Data Chapter 4. Linear Algebra Chapter 5. Statistics Chapter 6. Probability Chapter 7. Hypothesis and Inference Chapter 8. Gradient Descent Chapter 9. Getting Data Chapter 10. Working with Data Chapter 11. Machine Learning Chapter 12. k-Nearest Neighbors Chapter 13. Naive Bayes Chapter 14. Simple Linear Regression Chapter 15. Multiple Regression Chapter 16. Logistic Regression Chapter 17. Decision Trees Chapter 18. Neural Networks Chapter 19. Clustering Chapter 20. Natural Language Processing Chapter 21. Network Analysis Chapter 22. Recommender Systems Chapter 23. Databases and SQL Chapter 24. MapReduce Chapter 25. Go Forth and Do Data Science


网友评论

  • 好书,值得下载
  • 多谢啦,可找到了。这本书讲的内容偏基础的统计一点,不太实战
  • 最近打算学习,疯狂囤书中。
  • 很好的入门书
  • 书不错,可以看!!!
  • 书不错 感谢分享。
  • 不错,好东西,收藏,谢谢
  • 很棒的书,入门不错
  • 谢谢了,不错的资源。
  • python不错的书
  • 书不错 感谢分享
  • 很好的入门书
  • 书确实是好书,既然没有中文版,硬着头皮也要把它看来
  • 高清,好用
  • 谢谢分享,资料很全~~
  • 非常好的入门书籍!
  • 难得的好书,收藏,谢谢分享
  • 值得一看的书
  • 学习python的都可以拿来好好看看
  • 很好的数据学习入门书
  • 对数据科学的入门介绍,提纲,带路书籍
  • 非常好的入门书籍!
  • 简单明了 自己动手实施算法, 非常有用
  • 不错!学习中!
  • 资料很好,不错
  • 这个妹子写的书都相当好啊 用python讲数据科学。
  • 很清晰,感谢分享
  • 内容非常值得阅读
  • 非常好的Python数据入门书,是清晰的pdf版本~
  • 看过作者写的集体智慧编程,感觉不错;这本作为数据科学入门书应该不错。感谢分享。