文件名称:论文研究-结合IGA和BP算法的物体识别方法.pdf
文件大小:746KB
文件格式:PDF
更新时间:2022-09-28 07:41:57
论文研究
目前常用的物体识别方法,其过程非常复杂,信息量和计算量都很大。结合改进遗传算法的神经网络方法,采用将结构与误差结合的适应度函数,改进的遗传算子实现对BP网络结构和权值的同步优化。提出一种用改进遗传算法优化后的BP神经网络进行物体识别,并以提取的修正不变矩特征作为BP神经网络的输入,仿真结果表明该方法提高了识别的稳定性和收敛性能,并且识别率较高。从而验证了该方法的有效性。