文件名称:论文研究-基于密度函数加权的模糊C均值聚类算法研究.pdf
文件大小:536KB
文件格式:PDF
更新时间:2022-10-03 05:43:35
论文研究
模糊聚类算法具有较强的实用性,但传统模糊C均值算法(FCM)具有对样本集进行等划分趋势的缺陷,没有考虑不同样本的实际分布对聚类效果的影响,当数据集中各样本密集程度相差较大时,聚类结果不是很理想。因此,提出一种基于密度函数加权的模糊C均值聚类算法(DFCM算法),该算法利用数据对象的密度函数作为每个数据点权值。实验结果表明,与传统的模糊C均值算法相比,DFCM算法具有较好的聚类效果。