文件名称:论文研究-基于稀疏表示的多正则优化图像复原.pdf
文件大小:584KB
文件格式:PDF
更新时间:2022-09-26 23:36:54
论文研究
由于单正则化图像复原算法所利用的先验信息有限,影响了复原图像的质量。为克服此类算法的不足,融入更多的先验信息,改善图像复原的效果。在稀疏表示的理论框架下,提出了一种多正则优化图像复原算法。该算法将图像复原表示为含多正则项的全局优化问题,为有效处理这一复杂的图像复原问题,采用交替优化策略并借助变量分裂将其分解为若干优化子问题。其中,[uj 1]子问题可微,可直接得到其解析解。不可微的[wj 1]和[vj 1]子问题,则通过邻近映射求解。实验过程中对三种不同类型的退化图像进行了复原,所得结果验证了该算法的有效性。与FISTA(Fast Iterative Shrinkage-Thresholding Algorithm)和Split Bregman等单正则化图像复原算法相比,所提算法的复原效果和时间性能更优。