论文研究-基于WM-CoSaMP重构算法的压缩感知在步态识别中的应用研究.pdf

时间:2022-08-11 12:55:00
【文件属性】:

文件名称:论文研究-基于WM-CoSaMP重构算法的压缩感知在步态识别中的应用研究.pdf

文件大小:1.03MB

文件格式:PDF

更新时间:2022-08-11 12:55:00

步态识别,特征提取,压缩感知,投影观测,重构,基于小波树模型的压缩采样匹配(WM-CoSaMP)

针对步态识别中步态特征提取高维处理的复杂性,在研究压缩感知理论的基础上,提出将压缩感知理论应用于步态识别中的步态特征提取方面。在充分利用步态图像稀疏性的前提下,利用观测矩阵对步态图像进行投影观测,得到的观测值作为步态特征用于步态识别中,实现了特征提取的降维处理,大大降低了计算的复杂性。在步态图像的重构方面,在压缩采样匹配追踪(CoSaMP)的基础上,提出了基于小波树模型的压缩采样匹配(wavelet model-CoSaMP,WM-CoSaMP)的重构算法,进一步提高了重构精度。通过对比实验,验证了WM-CoSaMP重构算法的优越性,以及压缩感知在步态特征提取方面的优越性。


网友评论