Reversi_AI

时间:2024-04-17 05:50:59
【文件属性】:

文件名称:Reversi_AI

文件大小:20KB

文件格式:ZIP

更新时间:2024-04-17 05:50:59

Python

黑白棋AI 在这个项目中,我们将利用Tree数据结构在棋盘游戏Reversi(也称为Othello)中实现AI玩家。 由于网格尺寸为8x8,因此每转弯都可以进行许多潜在的移动,这在实施决策算法时提出了一些独特的挑战。 我们想比较不同决策算法的性能。 我们将在该项目中重点研究两种算法: Minimax:这是一种在两人回合制游戏中广泛使用的算法。 我们将根据不同价值评估功能提出的不同策略,使用此算法来实现AI播放器的各种版本 贪婪策略:在游戏树达到一定深度后,瞄准其侧面的最大块数 位置策略:旨在占据董事会中的某些位置以获得位置优势。 例如,角件不受翻转的影响。 机动性策略:瞄准尽可能多的举动 蒙特卡洛树搜索(MCTS):一种启发式搜索算法,用于决策制定,用于复杂的引擎(例如AlphaGo) 作者 邓浩泽 张培峰 万俊浩 亚历山大·尼古拉斯·康威


【文件预览】:
Reversi_AI-main
----reversi.py(15KB)
----minimax.py(16KB)
----.idea()
--------Reversi_AI.iml(441B)
--------misc.xml(185B)
--------workspace.xml(6KB)
--------inspectionProfiles()
--------modules.xml(272B)
--------vcs.xml(180B)
----pieces.py(448B)
----README.md(1KB)
----.gitignore(7B)
----run_game.py(2KB)

网友评论