文件名称:论文研究-基于双正则化参数的在线字典学习超分辨率重建.pdf
文件大小:664KB
文件格式:PDF
更新时间:2022-08-11 13:09:30
正则化参数,超分辨率,在线字典学习,稀疏编码,图像
基于学习的单图超分辨率重建算法能获得较好的超分效果,但存在重建图像伪影较为明显的问题。为解决这一问题,提出了一种基于双正则化参数的在线字典学习超分辨率重建算法。在字典学习过程中运用在线字典学习方法(online dictionary learning,ODL),并在稀疏字典生成阶段和图像重建阶段分别设置了两个不同的正则化参数。实验中生成的目标高分辨率图像PSNR比经典的稀疏编码超分方法(sparse coding super-resolution,SCSR)平均提高了0.39 dB,在较好地恢复图像边缘锐度和纹理细节的同时有效地抑制了伪影。ODL和双正则化参数的引入,提高了字典训练的精度,使字典训练和图像重建阶段的稀疏系数独立可调,实验中能够有效地消除伪影,提升了超分辨率重建的效果。