论文研究-序列图像的非局部均值超分辨率重建算法及GPU实现.pdf

时间:2022-08-11 12:21:18
【文件属性】:

文件名称:论文研究-序列图像的非局部均值超分辨率重建算法及GPU实现.pdf

文件大小:1.71MB

文件格式:PDF

更新时间:2022-08-11 12:21:18

序列图像,超分辨率重建,非局部均值,并行计算

针对序列图像超分辨率重建非局部均值(non-local means,NLM)算法重建结果图像边缘区域过平滑的问题,提出了一种局部参数自适应改进方法。将整幅图像划分为图像子块,然后根据图像子块平均像素信息计算出其对应的滤波参数,这样有助于减少因整幅图像使用统一滤波参数而导致的某些高频信息的丢失。实验结果表明,与经典NLM重构算法相比,改进算法重建出的结果图像的轮廓边缘更清晰,字符辨识度更高;在算法实现方面,图像重构程序在CPU/GPU平台上实现,使用GPU并行化加速的程序比单CPU运算的程序,加速比最高可达到30倍,显著缩短了重构程序计算时间,提高了该图像超分辨率重建算法应用于实际场所的可能性。


网友评论