svm算法手写matlab代码-Machine-Learning:机器学习练习

时间:2024-06-12 17:44:49
【文件属性】:

文件名称:svm算法手写matlab代码-Machine-Learning:机器学习练习

文件大小:28.95MB

文件格式:ZIP

更新时间:2024-06-12 17:44:49

系统开源

svm算法手写matlab代码机器学习 大家好, 我上传了我的机器学习在线课程作业,该课程由斯坦福大学的Andrew NJ教授教授。 所有代码都可以由MATLAB / Octave(4.4.0或更高版本)运行,并且为了提供有关每种练习的更多信息,需要准备一个文档文件。 最好先阅读一下并熟悉功能。 只需要运行以“ exNUM.m”命名的主函数,例如ex5.m 以下是每个练习的简要信息: HW1:线性回归。 在本练习中,我实现了线性回归方法,并看到了它在样本数据上的工作原理。 硬件2:逻辑回归。 在练习的第一部分,我建立了一个逻辑回归模型来预测学生是否被大学录取。 我使用线性决策边界对数据进行分类。 在练习的第二部分中,我实施了正则逻辑回归,以预测来自制造工厂的微芯片是否通过质量保证(QA)。 使用非线性决策边界和正则项。 HW3:神经网络的多类分类和实际使用。 在练习的第一部分中,我使用了逻辑回归的先前实现,并将其应用于“一对多”分类以识别手写数字(从0到9)。 最后,我获得了95%的训练集准确性。 在练习的下一部分中,我使用MPL神经网络库完成了先前的任务,令人惊讶的是准确性达到了97


网友评论