文件名称:基于Mask R-CNN的电力设备锈迹检测
文件大小:822KB
文件格式:PDF
更新时间:2024-05-26 06:25:04
深度学习 Mask R-CNN 锈迹检测 不规则
电力设备锈迹目标的识别在电力安全方面具有极高的应用价值,但是锈迹具有大小、形状不规则等特点,利用传统的机器学习算法检测效率和准确率不高.针对这一问题,研究分析锈迹特点,提出基于Mask R-CNN的电力设备锈迹检测识别方法.使用Faster R-CNN完成目标检测的功能,FCN精准的完成语义分割的功能,实现像素级别的分类识别,较好地解决了不规则锈迹的检测问题.实验结果表明,基于Mask R-CNN的电力设备锈迹检测结果准确率高.