文件名称:LightGBM:基于决策树算法的快速,分布式,高性能梯度提升(GBT,GBDT,GBRT,GBM或MART)框架,用于排名,分类和许多其他机器学习任务
文件大小:7.03MB
文件格式:ZIP
更新时间:2024-02-23 20:05:55
microsoft python machine-learning data-mining r
渐变光机 LightGBM是使用基于树的学习算法的梯度增强框架。 它被设计为分布式且高效的,具有以下优点: 训练速度更快,效率更高。 降低内存使用率。 更好的准确性。 支持并行和GPU学习。 能够处理大规模数据。 有关更多详细信息,请参阅。 受益于这些优势,LightGBM被广泛用于许多机器学习竞赛的中。 在公共数据集上进行的表明,LightGBM可以在效率和准确性上均优于现有的Boosting框架,并且显着降低了内存消耗。 此外, 表明,LightGBM可通过使用多台机器进行特定设置的训练来实现线性加速。 入门和文档 我们的主要文档位于并从该存储库生成。 如果您不熟悉LightGBM,请按照站点上进行。 接下来,您可能需要阅读: 显示常见任务命令行用法的。 LightGBM支持的和算法。 是您可以进行的自定义的详尽列表。 和可以加快计算速度。 是有关超参数的详细指南。 为LightGBM超参数()提供自动调整。 贡献者文档: 。 查阅《 。 新闻 请参考页面上的变更日志。 一些重要的更新日志可在“页面上找到。 外部(非官方)存储库 Optun