文件名称:基于多级特征整合的图像语义分割研究
文件大小:1015KB
文件格式:PDF
更新时间:2024-05-26 06:16:27
深度学习 语义分割 特征金字塔 多级特征整合
传统的全卷积神经网络由于不断的池化和下采样操作使得最后的特征热点图分辨率损失严重,导致了分割结果的细节刻画能力的缺失,为了弥补这一缺陷,往往通过跳跃连接融合中层的特征图以恢复空间信息.由于无法充分利用网络的低层特征信息,传统全卷积网络的特征融合阶段存在相当的缺陷,本文对这一现象进行了深入的分析.本文在上采样路径之前采用基于特征金字塔的特征信息增强方法,克服了浅层特征图语义信息匮乏这一缺点,使得整个网络能更充分的利用前向计算产生的特征图,输出的分割结果也更为精确.本文提出的算法在Pascal VOC数据集上取得了75.8%的均像素精度和83.9%的权频交并比,有效的提高了分类精度.