文件名称:论文研究-分类数据集的一致化特征选择约简.pdf
文件大小:722KB
文件格式:PDF
更新时间:2022-09-28 09:02:39
论文研究
样本数据集的不一致性和冗余特征会降低分类的质量和效率。提出了一种一致化特征选择约简方法,该方法基于贝叶斯公式,采用阈值,将非一致数据归为最可能的一类,使数据集一致化。并在一致数据集上,运用类别区分矩阵选择可准确区分各类数据的最小特征变量集。给出的启发式搜索策略和应用实例表明:一致化特征选择约简方法能有效消除分类数据集的不一致性,选择最优的特征变量、降低数据的维数、减少数据集中的冗余信息。