markov-switching-multifractal

时间:2024-05-02 02:49:33
【文件属性】:

文件名称:markov-switching-multifractal

文件大小:8.16MB

文件格式:ZIP

更新时间:2024-05-02 02:49:33

JupyterNotebook

背景 Calvet&Fisher(2004,2008)的马尔可夫切换多重分形随机波动率模型(MSM)允许对高维状态空间进行简化描述。 在Collins(2020)中,我证明了当扩展状态空间,使用高频数据以及考虑微结构噪声时,MSM的样本外性能得到改善。 我使用Python实现的MSM启用了最大似然估计和分析预测功能,具有多达13个波动率频率和8,000多个状态,是以前文献的八倍,在此版本中提供了代码(请参见MSM_03.py)。 MSM的此Python实现引入了一种随机算法,该算法结合了启发式过程和本地搜索,以结合本地优化对状态空间进行增强的探索。 在我的工作中,严格准备和清理数据,稀疏采样以及以最佳出价和要价各自深度加权的回报创新,减轻了微结构噪音。 这些发展形成了一个规格齐全的模型,可以更好地利用大型高频(HF)数据集提供给它的增加的信息。 样本中模型选择测试显示,随着引入更多的波动


【文件预览】:
markov-switching-multifractal-master
----MSM_03.py(8KB)
----__pycache__()
--------MSM_Scripts.cpython-37.pyc(900B)
--------MSM_03.cpython-37.pyc(7KB)
--------DEMSM_03.cpython-37.pyc(8KB)
--------DEMSM_Scripts.cpython-37.pyc(902B)
----LICENSE(1KB)
----test.txt(0B)
----MSM_Scripts.py(757B)
----MSM_03.ipynb(226KB)
----.ipynb_checkpoints()
--------MSM-03-checkpoint.ipynb(201KB)
--------MSM-words-checkpoint.ipynb(2.46MB)
--------JCollins-checkpoint.ipynb(2.46MB)
--------MSM_03-checkpoint.ipynb(226KB)
--------MSM-03-words-checkpoint.ipynb(2.45MB)
--------Paper-1-checkpoint.ipynb(2.12MB)
--------MSM_Empirical_Final-checkpoint.ipynb(2.03MB)
----DEXJPUS.csv(132KB)
----README.md(6KB)

网友评论