文件名称:论文研究-一种新的社会化相似度计算方法.pdf
文件大小:1.07MB
文件格式:PDF
更新时间:2022-08-11 13:36:05
推荐系统,协同过滤,社交网络,冷启动
基于社交网络的推荐算法引入社交网络信息到协同过滤算法中来, 使得用户朋友的偏好能够影响用户本身的偏好 。这些算法需要用到用户之间的相似度信息。目前有两个流行的基于共同评分项目集的相似度计算函数(VSS、PCC)。在很多情况下, 由于用户间没有共同评分项目集, 故无法计算他们之间的相似度。为了解决这个问题, 提出了一种基于矩阵分解的新的社会化相似度计算方法。在真实的包含社交网络的数据集上进行实验验证, 该方法的性能优于几个经典的基于社交网络的协同过滤算法, 而且能够解决新用户的冷启动问题。