文件名称:蔡氏电路matlab仿真代码-Neural-Factorization-Machine:分解机,深度学习,推荐系统
文件大小:2.98MB
文件格式:ZIP
更新时间:2024-06-15 10:13:05
系统开源
蔡氏电路matlab仿真代码 Neural-Factorization-Machine 基于TensorFlow实现Neural-Factorization-Machine 参考如下: Xiangnan He and Tat-Seng Chua (2017). Neural Factorization Machines for Sparse Predictive Analytics. In Proceedings of SIGIR '17, Shinjuku, Tokyo, Japan, August 07-11, 2017. LoadData.py:数据读取 NeuralFM_Model.py:模型定义 Run_NeuralFM_SquareLoss.py:针对平方误差损失,训练模型 Run_NeuralFM_LogLoss.py:针对对数似然损失,训练模型(对于frappe数据集,采用该损失很难找到合适的超参数)
【文件预览】:
Neural-Factorization-Machine-master
----data()
--------frappe.test.libfm(1.98MB)
--------frappe.train.libfm(13.89MB)
--------README(111B)
--------frappe.validation.libfm(3.97MB)
----Run_NeuralFM_SquareLoss.py(2KB)
----LoadData.py(4KB)
----Run_NeuralFM_LogLoss.py(1KB)
----README.md(619B)
----NeuralFM_Model.py(15KB)