Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

时间:2020-01-23 10:58:08
【文件属性】:

文件名称:Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

文件大小:3.86MB

文件格式:PDF

更新时间:2020-01-23 10:58:08

Computer Vision

Most state-of-the-art techniques for multi-class image segmentation and labeling use conditional random fields defined over pixels or image regions. While regionlevel models often feature dense pairwise connectivity, pixel-level models are considerably larger and have only permitted sparse graph structures. In this paper, we consider fully connected CRF models defined on the complete set of pixels in an image. The resulting graphs have billions of edges, making traditional inference algorithms impractical. Our main contribution is a highly efficient approximate inference algorithm for fully connected CRF models in which the pairwise edge potentials are defined by a linear combination of Gaussian kernels. Our experiments demonstrate that dense connectivity at the pixel level substantially improves segmentation and labeling accuracy.


网友评论