文件名称:论文研究-基于R-滤子的多帧图像重建算法.pdf
文件大小:581KB
文件格式:PDF
更新时间:2022-09-27 21:30:41
论文研究
针对图像重建中低分辨率图像信息的利用和先验项(正则化项)的估计问题,提出一种新颖的算法——R-滤子方法,通过计算输入图像的高阶信息来构建先验项,同时采用广义交叉验证(Generalized Cross Validation,GCV)方法自适应求解先验项参数(正则化参数),加强算法的自适应性。实验结果表明:重建图像的峰值信噪比值(Peak Signal-to-Noise Ratio,PSNR)比目前主要先验项方法(BTV、Sparse、Huber)的重建图像的值更高,从重建图像的局部细节和纹理也看出该方法的重建图像具有更丰富的信息,同时,从构造方法上说明R-滤子方法在计算上要优于其他方法。