文件名称:论文研究-基于KPCA和改进极限学习机的煤与瓦斯突出危险性判识.pdf
文件大小:1.07MB
文件格式:PDF
更新时间:2022-08-11 17:42:41
煤与瓦斯突出,核主成分分析(KPCA),蝙蝠算法(BA),极限学习机(ELM),耦合预测
为实现煤与瓦斯突出危险性的准确、快速地动态预测,提出构建基于KPCA-BA-ELM的突出危险性耦合预测模型。根据煤与瓦斯突出综合作用机理,确定突出各影响因素参数;利用核主成分分析(KPCA)对样本数据进行预处理,提取出主成分序列;利用蝙蝠算法(BA)优化极限学习机(ELM)模型,并与BA-ELM、ELM、SVM和BP等模型共同进行突出危险性预测,验证模型的优越性。结果表明,基于KPCA-BA-ELM突出危险性预测模型平均绝对误差为4.560,平均相对误差为3.478%,运行时间为1.286 s,较其他模型具有精准的判识度和较高的泛化能力;能充分挖掘突出时空演变的内部隐含规律,有效诠释突出危险性与其影响因素间的非线性关系。