文件名称:支持向量机应用于大气污染物时间序列预测
文件大小:1.89MB
文件格式:PDF
更新时间:2018-09-29 13:57:40
SVM
阐述了支持向量机应用于大气污染物时间序列预测的具体方法,建立了大气污染物时间序列的支持向量机预测模型。该方法将支持向量机应用于大气污染物浓度预测:首先通过选择合适的信息量准则来确定模型阶数;而后通过实验的方法选择参数从而形成支持向量机的训练样本集,在此基础上建立了基于支持向量机的时间序列大气污染预测模型。实例表明,无论是在仿真过程还是在预测过程, 支持向量机都具有很高的预测精度。因此,采用支持向量机方法对大气污染物时间序列进行预测分析是可行的。