文件名称:论文研究-基于耦合模拟退火优化最小二乘支持向量机的车轮踏面磨耗量预测.pdf
文件大小:913KB
文件格式:PDF
更新时间:2022-08-11 14:49:56
耦合模拟退火,最小二乘支持向量机,超参数优化,踏面磨耗
针对最小二乘支持向量机(LS-SVM)超参数优化问题,提出采用改进耦合模拟退火(CSA)算法优化LS-SVM超参数。首先,耦合模拟退火算法通过并行处理多个独立模拟退火(SA)寻优过程,提高LS-SVM模型超参数优化效率;然后通过调整接受温度控制耦合项超参数的接受概率方差,降低CSA算法初始设置对LS-SVM最优超参数确定过程稳健性的影响;最后结合既有线轮轨现场的实际检测数据,开展了基于改进耦合模拟退火优化的最小二乘支持向量机(CSA LS-SVM)回归模型性能对比实验。结果表明,CSA LS-SVM回归模型达到了模型精度、算法快速性、算法鲁棒性的有效折中,所建立的LS-SVM优化模型用于现场的车轮踏面磨耗量的预测是有效的。