文件名称:基于灰色自适应粒子群LSSVM的铁路货运量预测 (2012年)
文件大小:476KB
文件格式:PDF
更新时间:2024-06-09 17:02:17
工程技术 论文
为了提高铁路货运量的预测精度及建模速度,将灰色预测模型(GM(1,1))、最小二乘支持向量机(LSSVM)和自适应粒子群优化(APSO)算法相融合,建立了灰色自适应粒子群最小二乘支持向量机(GM-APSO-LSSVM)预测模型。通过灰色预测模型中的灰色序列算子,弱化原始数列随机性,挖掘数列中蕴含的规律,利用最小二乘支持向量机计算简便、求解速度快、非线性映射能力强的特点进行预测,并采用自适应粒子群算法优化选择LSSVM参数。对我国铁路货运量的实例分析表明:用该模型得到的评价指标RMSE,MAE,MPE和Th