文件名称:论文研究-融合多策略特征筛选的跨项目软件缺陷预测.pdf
文件大小:774KB
文件格式:PDF
更新时间:2022-09-26 09:22:12
论文研究
针对跨项目软件缺陷预测过程中,软件缺陷数据存在无关信息或数据冗余等问题,提出融合多策略特征筛选的跨项目软件缺陷预测(cross-project software defect prediction based on Multi-Policy Feature Filtering,MPFF)方法。采用多策略筛选方法与过采样方法进行数据预处理;使用代价敏感的域自适应方法进行分类,分类过程使用少量已标记目标项目数据改善项目间分布差异;在AEEEM、NASA MDP及SOFTLAB数据集上进行了不同度量下预测实验。实验结果表明,在同构度量下MPFF方法相比Burank filter、Peters filter、TCA 和TrAdaBoost方法预测效果最佳。