文件名称:数据算法 hadoop spark大数据处理技巧
文件大小:72.75MB
文件格式:7Z
更新时间:2021-09-19 11:01:49
hadoop spark
《数据算法:Hadoop/Spark大数据处理技巧》介绍了很多基本设计模式、优化技术和数据挖掘及机器学习解决方案,以解决生物信息学、基因组学、统计和社交网络分析等领域的很多问题。这还概要介绍了MapReduce、Hadoop和Spark。 主要内容包括: ■ 完成超大量交易的购物篮分析。 ■ 数据挖掘算法(K-均值、KNN和朴素贝叶斯)。 ■ 使用超大基因组数据完成DNA和RNA测序。 ■ 朴素贝叶斯定理和马尔可夫链实现数据和市场预测。 ■ 推荐算法和成对文档相似性。 ■ 线性回归、Cox回归和皮尔逊(Pearson)相关分析。 ■ 等位基因频率和DNA挖掘。 ■ 社交网络分析(推荐系统、三角形计数和情感分析)。 作者简介 Mahmoud Parsian,计算机科学博士,是一位热衷于实践的软件专家,作为开发人员、设计人员、架构师和作者,他有30多年的软件开发经验。目前领导着Illumina的大数据团队,在过去15年间,他主要从事Java (服务器端)、数据库、MapReduce和分布式计算的有关工作。Mahmoud还著有《JDBC Recipes》和《JDBC Metadata, MySQL,and Oracle Recipes》等书(均由Apress出版)。
【文件预览】:
数据算法 Hadoop Spark大数据处理技巧.pdf