文件名称:论文研究-保持拓扑性非负矩阵分解法在人脸识别的应用.pdf
文件大小:594KB
文件格式:PDF
更新时间:2022-10-01 01:43:07
论文研究
提出了一种用于人脸识别新的保持拓扑性非负矩阵分解方法。该方法通过将梯度距离最小化来发现人脸模式内在的流型结构。与PCA、LDA和最初的NMF方法相比较,保持拓扑性非负矩阵分解法发现一种嵌入来保留局部拓扑信息,比如边缘和质地。该文提出的保持拓扑性非负矩阵分解法对在有光照下的面部表情的变化有效。实验结果表明该方法提供了一种更好的脸部表示模式,同时也提高了人脸识别正确率。