文件名称:线性跟驰模型的matlab代码-Unscented_KalmanFilter:适用于自动驾驶汽车(AV)项目的无味卡尔曼滤波器(C++)。使用
文件大小:1.35MB
文件格式:ZIP
更新时间:2024-06-15 03:51:52
系统开源
线性跟驰模型的matlab代码无味卡尔曼过滤器项目 无人驾驶汽车工程师纳米学位课程 阿图尔·阿查里亚(Atul Acharya) 结果 无味卡尔曼滤波器(UKF)是常规扩展卡尔曼滤波器(EKF)的扩展。 UKF允许使用非线性模型(与EKF不同,后者假定为恒定速度模型)。 UKF允许: 恒定转速和速度(CTRV) 恒定转速和加速度(CTRA) 恒定的转向角和速度(CSAV) 恒定曲率和加速度(CCA) 该项目在给定的数据集上假设CTRV运动模型。 为了处理非线性模型,UKF通过无味转换进行工作。 在Predict阶段,它首先生成Sigma点,对其进行扩充,然后预测平均状态向量和过程协方差矩阵。 在更新阶段,将sigma点转换为测量空间,然后基于传感器(雷达/激光雷达)的测量值应用更新,以获取状态向量和过程协方差矩阵的新值。 UKF项目的结果如下所示。 还显示了UKF参数,以及每个数据集的结果RMSE值。 选择UKF参数以在所需范围内优化RMSE。 在数据集1上,[px,py,vx,vy]值的RMSE值在所需的[0.09、0.09、0.65、0.65]范围内 在数据集2上,[px,py,v