Matlab最小二乘类辨识方法的比较-辨识作业.rar

时间:2022-09-01 21:51:09
【文件属性】:

文件名称:Matlab最小二乘类辨识方法的比较-辨识作业.rar

文件大小:414KB

文件格式:RAR

更新时间:2022-09-01 21:51:09

matlab

Matlab最小二乘类辨识方法的比较-辨识作业.rar 很久以前做过的一篇课程论文,是系统辨识中最基础的几种最小二乘类辨识方法的比较,最小二乘法,递推最小二乘和广义最小二乘,发上来和大家分享一下, 注意: 本附件免费提供,但是每下载一次系统会扣一个M币以控制下载流量,右键单击另存为,不要用迅雷.迅雷下载时每线程收费1M币,如默认设置为5个线程时收费就是5个M币! 课题内容为 已知系统模型:x-1.5x 0.7x=2u 0.5u, y=x ν, ν=αγ, u、x、y、ν分别为模型输入、模型输出、测量输出、干扰噪声。输入u为逆m序列:信号幅值a=1、寄存器位数为n=5,重复周期数q=40。α为噪信比调整因子,噪信比定义为:NSR=σv/σx*100% ,σx、σv分别为模型输出x和噪声ν的均方差(标准差),γ有两种模型:γ为白噪声,γ为有色噪声,噪声模型为: γ=e 0.5e 0.9γ-0.95γ ,e为白噪声。定义辨识误差值:δ= ,其中:N为独立的实验次数, 为模型真值, 为估计值。 完成下列问题: 1.编制Matlab程序,产生u,x,取前1024点绘制u和x图形。(10分) 2.编制Matlab程序,取NSR=20%,用同一噪声源产生两种噪声模型,分别绘制ν、y曲线。(10分) 3.编制Matlab程序,取NSR=0%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%,ν分别采用白噪声模型和有色噪声模型,每种工况下取独立试验次数N=50(每次独立产生噪声),数据序列取前1024点,用批次最小二乘法辨识模型,分别画出NSR~δ曲线,以此说明噪声对辨识精度的影响。(20分) 4.编制Matlab程序,取NSR=10%、40%,ν分别取白噪声模型和有色噪声模型,用递推最小二乘法辨识模型参数,对比画出各参数辨识结果随递推次数变化的曲线。为了对比研究,必须保证在同一组u、x序列下,用同一白噪声源γ产生给定噪信比的白噪声和有色噪声干扰。(30分) 5.编制Matlab程序,取NSR=10%、30%,ν取有色噪声模型,分别用递推最小二乘和广义最小二乘递推法辨识系统参数,对比画出各参数辨识结果随γ次数变化的曲线。为了对比研究,必须保证在同一组u、y序列下进行辨识试验。(30分) 摘要:本文系统的探讨了三种最小二乘类辨识方法的原理和性能,并对各种方法在各种不同的环境下进行了MATLAB仿真,仿真结果证明:最小二乘法不适合实时处理,在同等情况下,递推最小二乘的辨识速度较快,但在有色噪声干扰下效果不理想,广义最小二乘法的辨识效果最好,且不受噪声是否有色的影响,但是费时最多。


【文件预览】:
Matlab中文论坛--助努力的人完成毕业设计.url
使用帮助:新手必看.htm
辨识作业
----附录2 同一噪声源模型产生的白噪声和有色噪声.doc(20KB)
----附录4 递推最小二乘算法在白噪声和有色噪声下工作的源程序.doc(38KB)
----附录6 广义最小二乘法在不同噪声模型阶次下辨识的源程序.doc(33KB)
----2005年模型辨识研究生考查试题.doc(25KB)
----系统辨识论文.doc(578KB)
----附录3 批次最小二乘法辨识源程序.doc(29KB)
----附录1 系统的输入和输出.doc(23KB)
----附录5 递推最小二乘法和广义最小二乘法在有色噪声模型干扰下辨识的源程序.doc(38KB)

网友评论